If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2+6t+1=0
a = -2; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·(-2)·1
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{11}}{2*-2}=\frac{-6-2\sqrt{11}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{11}}{2*-2}=\frac{-6+2\sqrt{11}}{-4} $
| 15x²+14x+3=0 | | 3/11+x=9/11 | | 750+x(10)=1400 | | 2(2a+3)=a-13 | | 3-(1/3)x^2=0 | | 6,25x^2+1,69=6,5x | | 9-n=4/5n | | 6x^2-5x-38=0 | | 0,25x^2=0,36 | | 6x/7-4=-5 | | 2x+7=x+21= | | 3(y-2)=4-2y | | 3x3-2x2+-7x-2=0 | | 2w+2=2w+7 | | 2x+5=-6x+5 | | 0,25^x2=0,36 | | n^2-n-6480=0 | | 3x(3-x)-14=0 | | 2n-4=0 | | 5y/7-15=5y=30 | | 5x+3=2x=10 | | 4(3x+5)=5x-22 | | 200m+100m+47750=50250-150m | | 200m+100m+47750=50250-150 | | 15x/27=5/9 | | 6x+3=-5x=14 | | x*2=5x= | | (2m^2-5)/(m^2-4)=1 | | x+0.2/100x=0.08418908 | | x+0.2/100*x=0.08418908 | | 8x+26=4x+14 | | x/10+7=-1 |